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Abstract—Systemic-to-Pulmonary Artery (SPA) shunt 
surgery, one of the most common cardiac surgical procedures in 
the newborn period, provides a means to palliate children with 
limited pulmonary blood flow, such as in Tetralogy of Fallot. 
Despite the simplicity of the procedure, it is associated with 
significant morbidity (such as need for extracorporeal membrane 
oxygenation (ECMO), and long post-operative length of stay 
(PLOS) in the hospital following surgery) and mortality. These 
outcomes are known to be impacted by a number of complex 
factors (including patient specific and procedure specific factors, 
perioperative related factors, etc.), whose relative importance in 
clinical decision making remains the domain of clinical judgment. 
The increasing availability of multi-modal data on patient care 
and outcomes opens up the opportunity to assess clinical 
practices from a more data-driven perspective. In this paper, we 
report results from a study of 1036 patients (from 44 children’s 
hospitals across the US) during 2009-2014 that applies a machine 
learning approach to predicting post-operative outcomes for 
patients in the Pediatric Health Information System (PHIS) 
database. We demonstrate that it is feasible to achieve significant 
prediction benefits using a standard machine learning approach 
(random forests) on a carefully constructed dataset, showing the 
value of applying machine learning even with noisy 
administrative databases. The methods we describe can be used 
to identify potential important variables that lead to good clinical 
judgment as defined by desirable clinical outcomes.   
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I. INTRODUCTION 
In the US, approximately 40,000 infants are born each year 

with a congenital heart defect [1]. One third of babies born 
with congenital heart disease are estimated to require 
intervention within the first year of their life. Management of 
these infants and children can be associated with significant 
morbidity and mortality. This results in growing interest in 
improving the quality of pediatric cardiac care [9].  

The Systemic-to-Pulmonary Artery (SPA) shunt is a 
common procedure, often performed in the neonatal period, 
used to establish a reliable source of pulmonary blood flow in 
babies with limited or absent pulmonary blood flow [8, 15]. It 
is also often an integral part of staged palliative procedures for 
selected neonates and infants with complex heart defects. 

However, despite the relatively “straightforward” nature of the 
procedure, often not requiring open-heart or use of heart-lung 
machine as in other pediatric cardiac procedures, the SPA 
shunt surgery can be associated with significant morbidity and 
mortality. Frequently, post-surgical intervention or 
extracorporeal membrane oxygenation (ECMO) is needed as a 
form of rescue. Infants who end up on ECMO may go on to 
develop severe neurologic insult(s) despite survival, 
highlighting the potential morbidity of when ECMO is needed.  
In addition, some neonates have long post-operative length of 
stay (PLOS) after SPA shunt, which is undesirable, since this 
can not only contribute to excess cost but also unanticipated 
complications (e.g., hospital acquired infections). Therefore, 
long PLOS, mortality and need for ECMO, can serve as 
reasonable surrogate markers of poor outcomes for patients 
who undergo surgical interventions, including neonates that 
undergo SPA shunt surgery [12]. 

Our goal in this paper is to understand how a number of 
features (such as use of certain pharmaceuticals, procedural, 
and other clinical variables) derived from the large Pediatric 
Health Information System (PHIS) database are associated 
with outcomes following SPA shunt surgery. Our long term 
goal is to apply the knowledge gained as a prediction tool for 
patient management algorithms. In this manuscript, we 
employ Random Forest (RF) algorithm [3], which has various 
desirable properties for a task such as this including robustness 
to overfitting and a natural method for providing feature 
importance [7, 11, 19], in addition to the well-known high 
empirical prediction accuracy [4]. 

This paper is organized as follows: In Section II we briefly 
review the related literature. In section III, we provide an 
overview of RF. Section IV details our methodology, and 
Section V describes our experimental results. 

II. RELATED WORK 
Machine Learning (ML) algorithms are being increasingly 

applied to large medical datasets as an approach to identifying 
factors that can predict outcomes. They have been shown to 
improve selection of the most important clinical decision 
making predictors in the medical arena. In the study by 
Schnieder et. al [22] in 2014, the Naive Bayesian Network 



(NBN) and multiple linear regression were used for diagnosis 
of hyperparathyroidism, and the authors compared the 
performance of two approaches. They demonstrated that the 
NBN had better performance than traditional regression. In 
another study in 2014 [17], Artificial Neural Network (ANN), 
Bayesian Network (BN) and Logistic Regression (LR) were 
used to determine the predictors of post-operative delirium in 
cardiac surgery patients. The authors successfully 
demonstrated the use of ANN and BN in prediction of 
delirium. Jalali et. al (2014) [13], developed a decision tree for 
prediction of Periventricular Leukomalacia (PVL) occurrence 
in neonates after pediatric heart surgery. Nilsson et. al (2006) 
[18] used ANN to identify risk factors in cardiac surgery that 
predict mortality. In 2001, DeGroff et. al [6] used ANN for 
classification of heart sound data into innocent and 
pathological classes.  

Random Forests specifically have been applied in various 
bioinformatics studies such as large-scale association studies 
for complex genetic diseases. Lunetta et al. [15] and Bureau  
et al. [4] focused on Single Nucleotide Polymorphisms 
(SNPS). They detected SNP-SNP interactions in the case-
control context by computing a random forest variable 
importance measure for each polymorphism. Diaz-Uriate and 
Alvarez de Andrés [7] compared the performance of RF and 
other classification approaches for the analysis of gene 
expression data. In another study [10], RF was applied to 
microarray data to match the physiological effect of a novel 
drug at the cellular level with its clinical relevance. Shi and 
colleagues [24] used RF for tumor classification after tissue 
microarray profiling.  

Despite the large number of studies in applying ML 
algorithms in computational biology and bioinformatics, 
relatively little has been done in some highly complex 
disciplines, such as pediatric heart surgery, where indeed, 
patients can present with 40 to 50 different diagnoses, each 
with subtle variations and associated with additional co-
morbidities (such as chromosomal problems, other non-
cardiac congenital anomalies, prematurity, weight, sex, etc.) 
that have previously been shown to impact outcomes. The 
diverse array of various treatment options (surgical, catheter 
based, medical, etc.) further complicates this milieu. In 
addition, previous studies that used the hospital administrative 
data for their analysis have chiefly focused on adults [2, 16, 
21, 25], with few studies including data for children [23, 29] 
and have generally found administrative data to be an 
inaccurate source of information when compared with clinical 
data [20]. This study uses RF to overcome the limitations of 
administrative data.  

 

III. METHODOLOGY 
The prediction process of SPA shunt surgery outcomes is 
described in detail in this section, including description of the 
learning algorithm, our pilot dataset, feature extraction, and 
the experimental parameters.  

A. RANDOM FORESTS  
RF is a collection of classification or regression trees that 

are fully-grown. A data point’s class is predicted by averaging 
the predictions of individual trees. Each tree is fit from a 
bootstrapped training set (i.e. sampled with replacement) of 
the same size (N) as the entire training set. While each tree is 
being grown, for each split, only some random subset of the 
features (of size 𝑚 where m is the total number of features) 
are considered for the split. We choose the split that 
maximizes the Gini index. Since we are dealing with a highly 
imbalanced dataset (29% poor outcomes, 71% good 
outcomes), we reweight the examples of poor outcomes to 
have 3 times the weight of examples with good outcomes. 

Each bootstrap sample includes, on average, 2/3 of the 
original data points [3]. For each tree, a subset of the entire 
training data is not used in the construction of that tree. The 
out-of-bag (OOB) error is estimated by predicting each 
training data point using only those trees in the ensemble for 
which that example was out-of-bag in the construction. In the 
RF, each tree is a weak classifier and combining the trees by 
averaging the predictions of many weak classifiers results in 
significant accuracy improvement compared to a single tree 
[5]. In other words, since the unpruned trees are low-bias, 
high-variance models, averaging over an ensemble of trees 
reduces variance while keeping bias low [26]. RFs have 
previously had significant success in biomedical applications  
[19, 27]. 

B. DATASET 
This study is a retrospective, observational cohort study 

using the PHIS database (Children’s Hospital Association, 
Overland Park, KS). The PHIS database contains de-identified 
administrative data, detailing demographic, diagnostic, 
procedures, and daily billing data from 47 freestanding, 
tertiary care children’s hospitals.  This database accounts for 
approximately 20% of all annual pediatric hospitalizations in 
the U.S.  Data quality is ensured through a joint effort between 
the Children’s Hospital Association and participating 
hospitals. The protocol was reviewed by the Institutional 
Review Board of Washington University School of Medicine, 
Saint Louis, MO, and was determined to be exempt. 

The data for 1036 neonates with SPA shunt surgery were 
collected from 44 children’s hospitals in the US (2009 to 
2014). For each patient, four types of features were extracted 
for each day of their hospitalization. The four types were  
pharmaceutical, laboratory, supply, and imaging features, 
numbering 326, 310, 345 and 108, respectively. A summary 
description of the features is shown in Table I. The 
dichotomous outcome was defined as: positive outcome (+1 
value) for neonates who underwent ECMO or had mortality or 
long PLOS, and negative outcome (0 value) for neonates who 
had none of the preceding and were discharged home after 
SPA shunt surgery within 35 days.  The 75th percentile (35 
days) for the length of stay was used to determine the 
threshold of long PLOS. Note that, with this convention, for 
the learning algorithm a “positive” outcome is actually a bad 



outcome for the patient, and a negative outcome is a good 
outcome for the patient.  

TABLE I.  SUMMARY DESCRIPTION OF FEATURES 

 

Feature type 
Number 

of 
features 

Examples  

 
Pharmaceutical 

 
 

 
326 

 
 

Meperidine HCl, 
Methadone HCl 
Morphine sulfate 
Oxycodone HCl 

 

Laboratory 
 310 

Ketone bodies 
Lactic acid 
Citric acid 

Pyruvic acid 
 

Supply 
 345 

Aspirator suction unit 
Other respiratory drainage 

supply 
Stomach tube for suction and 

drainage 
Decompression pump 

 

Imaging 108 

Whole body SPECT 
Brain ultrasound 

Brain ultrasound real-time 
Brain ultrasound B-mode 

 

Total number 
of features 1089 

 
 

C.  FEATURE EXTRACTION 
For each neonate in the dataset, the pharmaceutical, 

laboratory, supply and imaging files were used to count the 
frequency of applying each service and the value of the related 
features obtained. The mentioned files contain various services 
related to pharmacy, laboratory, imaging and supply that are 
used for each patient based on the day of admission. There are 
some other features describing the clinical profile of the 
neonates including the gestational age, birth weight, non-heart 
congenital anomalies, chromosomal anomalies and sex. The 
last 3 features are categorical features with “yes” or “no” 
values to show if the neonate has the anomaly or not and if the 
neonate is male or female. Among 1036 patients, there are 224 
patients with at least one non-heart congenital anomaly, for 
example an anomaly in the nervous or respiratory system or an 
anomaly in the eye or ear. Also, 205 of the patients have 
chromosomal anomalies. In a fair test, to count the feature 
value in the dataset, we calculate the summation of values 
from the day of surgery until k days (k is a constant 
(0,1,2,3,…)) after SPA shunt surgery. All the patients who 
died or went on ECMO prior to k days after SPA shunt are 
excluded from the dataset. This prevents the occurrence of 
ECMO itself from influencing the prediction algorithm (e.g., 
the day that the patient goes on ECMO, invariably, heparin, an 

anticoagulant is given; this, however, does not mean that 
heparin leads to the need for ECMO). 

 

D. RF FOR PREDICTING THE OUTCOMES OF SPA SHUNT 
SURGERY 

We performed three sets of experiments. For the first 
experiment, we used an ensemble of 100 trees to predict 
outcomes based on data through 1, 2, and 3 days after surgery 
respectively. Each of these datasets is different both because 
some of the training examples are excluded (patients who had 
ECMO or died in the intervening days are excluded) and 
because the time averages of the features changes based on the 
drugs and procedures administered. For the second 
experiment, we tried different numbers of trees in the 
ensemble (100, 200 and 400), using the “day 3” data from the 
first experiment. In the third experiment, we included patient 
features including gestational age, birth weight, chromosomal 
anomalies, non-heart congenital anomalies and sex in addition 
to the feature set described above.  

IV.   RESULTS AND DISCUSSION 
Among 1036 patients, 24 underwent ECMO on the day of 

SPA shunt surgery. The distribution of the initial day after 
surgery that neonates went on ECMO is presented in Fig. 1.  

          
Fig. 1. Distribution of the initial day after surgery that neonates went on    
ECMO     

 
 

Using 100 trees in the RF for day 1, 2 and 3 after the SPA 
shunt provides the Area Under the Curve (AUC) of the 
receiver operating characteristic (ROC) curves shown in Table 
II. The results demonstrate that there is some improvement in 
using data through day 3, despite the loss of several of the 
(already few) examples of poor outcomes to train on. 
Therefore, there is value to knowing the histories of patients 
for the first few days after surgery. For the rest of the 
experiments, therefore, we focus on the datasets built using 3 
days of data after the day of surgery. Table III demonstrates 
that using 400 trees does offer some prediction benefit over 
using 100, as can also be seen from the ROC curves (Fig. 2). 



Finally, our third experiment was to add clinical features 
including gestational age, birth weight, chromosomal 
anomalies, non-heart congenital anomalies and sex of the 
neonates to the set of 1089 features. The AUC increased to 
0.7432 when RF has 400 trees. Table IV and Fig. 3 present the 
corresponding AUC and ROC curves. This final result 
demonstrates that one can achieve significant predictive 
power, with close to 75% chance of ranking a random pair of 
examples correctly in terms of which of the pairs are more 
likely to have a poor outcome after SPA shunt surgery. 

TABLE II.   THE AUC BASED ON DAYS AFTER BT SURGERY; DAY 3 
PROVIDES THE AUC MORE THAN DAY 2 AND DAY 1 

 
 
 
 
  
 
 

 

TABLE III.  THE AUC OF CURVES IN DAY 3 WITH VARIOUS RANDOM 
NUMBER OF TREES IN RF 

 

 

 

 

 
 

TABLE IV.  THE AUC OF THE RF WITH RANDOM NUMBER OF TREES 
WHEN CLINICAL FEATURES OF NEONATES ARE ADDED TO THE FEATURE SET 

 

 

 

  

 

 

V. CONCLUSION 
 

 There have been a number of reports that have criticized 
the accuracy and power of administrative data for clinical 
decision making, especially when compared to clinical data. 
This paper serves as a proof of concept that ML algorithms 
may overcome some of these limitations. We have shown that 
by applying completely standard, off-the-shelf machine 
learning methods to a carefully constructed dataset with 
dichotomous “good” and “poor” outcomes we can achieve 

good predictive power using such data. The important aspect 
of our results are not the performance numbers themselves, but 
the fact that we can get some “lift” in predicting poor 
outcomes using administrative data. The RFs can then be used 
to identify critical features of clinical practice that are 
important in determining patient outcomes. This demonstrates 
that ML algorithms may have the potential to unravel or 
flatten critical decisions in a complex system, allowing one to 
focus on a more limited dataset for deeper investigation. 

 
Fig. 2.  The ROC curves of RF with random number of trees from day of 
surgery until day 3 

 
Fig. 3. The ROC curves of RF with 100, 200 and 400 trees when clinical 
features of the patients are added to the feature set; the curve with 400 trees is 
above the curves with 100 and 200 trees 
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